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ABSTRACT 

Multi-Criteria Decision-making (MCDM) is employed in many fields of engineering decision-making 

including robot selection challenges. Researchers are very interested in using the MCDM technique for robot 

selection difficulties. The current study employs four common MCDM methods: COCOSO, TOPSIS, VIKOR, 

and MOORA are utilized to determine the better robot choices. Furthermore, in MCDM, weight allocation is 

critical in selecting the optimal choices. Thus, five distinct objective weight allocation approaches are utilized 

to fix a real-time robot selection issue with five selection criteria and seven alternative robots: Entropy method 

(EM), Mean weight method (MW), Criteria Importance Through Inter Criteria Correlation (CRITIC), Standard 

deviation method (SD), and Analytic Hierarchy Process (AHP). The primary goal of this work is to compare 

the relative performance of the 20 most well-known combinations (four MCDM approaches and five 

alternative weight allocation methods) in terms of observed ranks. The ranks produced from the 20 

permutations are not uniform, which must be considered. In this study, the Rank Average (Mean) approach is 

utilized to aggregate the 20 collected rankings into a single composite rank, which is then compared to the 

rankings produced by the other 20 permutations. The performance of the MOORA combination techniques 

(MOORA-MW, MOORA-CRITIC, and MOORA-AHP) is adequate for handling selection difficulties. It is 

impractical to expect a freshly designed MCDM, such as a COCOSO, to outperform well-tested -and-true 

approaches such as TOPSIS, VIKOR, and MOORA. Decision mistakes may occur if just one MCDM-TOOL 

(MCDM method - WEIGHT method) is used to pick the options without also considering the other MCDM-

TOOLS. 
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1. Introduction 

Managers have significant difficulty in the proper 

selection of machines and robots, which is essential for 

sustaining a competitive edge. The term "robot 

selection criteria" refers to the factors that play a role 

in deciding which robot will be used in a certain 

industrial setting. Criteria like these that influence the 

choice of a robot may be divided to two categories: 

good and bad. Positive features, such as load-bearing 

capability and programming versatility, are ideally 

aimed at higher values, while negative characteristics, 

such as cost and repeatability error, are intended to be 

lower. Many key strategic factors, including 

maximum tip speed, purchase cost, supplier service 

quality, memory capacity, repeatability, adaptability, 

etc. have recently received more attention. With so 

many models to choose from, finding the right robot 

for a certain job and manufacturing setting has become 

a challenging endeavor. In light of this tendency, it's 

clear that we need a system for comparing and 

contrasting different robots to choose the best one. 

Numerous precision-based approaches to robot 

selection have been developed for the same purpose. 

A variety of engineering fields, from design to 

production, have used MCDM strategies. In terms of 

robots, it's really useful. For instance, there are 

literature available MCDM models for choosing 

appropriate robots. There are several MCDM 

strategies for choosing a robot that have been 

published in the literature. Because the topic of this 

study is the selection of robots, previously succeeded 

MCDM applications incorporated into a crisp data set 

will be presented.   

 

Agrawal, et al. [1] suggested steps to the rank of robot 

selection of the alternates in a shortlist using the 
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TOPSIS technique. The improved expert system was 

used to help the decision maker at various stages to 

establish vantages and visualize the selection process. 

Khouja [2] used data envelopment analysis (DEA) to 

select the best robots with vendor specifications 

combinations depending on the robots’ performance 

parameters. Then, an MCDM method was utilized to 

choose the best robot. Zhao, et al. [3] merged a first-

fit bin packing algorithm with a multi-chromosome 

genetic algorithm for a integrated-computer  

manufacturing system workstation solving the robot 

selection and assignment problems. Goh, et al. [4] 

created a refined weighted sum decision model which 

considers both subjective and objective properties 

while selecting a robot. Baker and Talluri [5] 

developed a methodology  for selecting industrial 

robots based on cross efficiencies in DEA without 

taking into account the decision maker’s  preferences 

or the criteria weights. Goh [6] used the AHP for robot 

selection that could take into consideration both the 

subjective attributes and objectives simultaneously. 

Braglia and Petroni [7] developed a technique for 

industrial robot selection using DEA, which endeavors 

to recognize the best robot by measuring each robot’s 

relative efficiency through linear-programming 

problem resolution. Parkan and Wu [8] investigated 

the TOPSIS methods rating and operational 

competitiveness applications and interrelationship in a 

selection problem of the robot and compared their 

efficiency with other approaches. Khouja [9] 

developed a model of robot selection, which would, in 

turn, provide the decision maker, with the 

replacement, of the selected robot option with a better 

one throughout the product’s life with uncertain 

demand. Braglia and Gabbrielli [10] treated the 

mathematical method applicability depending on 

dimensional analysis theory to solve the robot 

selection problems. Talluri and Yoon [11] applied the 

cone-ratio DEA combination, which would 

consolidate the decision maker’s preferences with a 

new DEA methodological extension for industrial 

robot selection. Bhangale, et al. [12] investigated a 

methodology of robot selection using graphical and 

TOPSIS methods. They contrasted the relative 

classifications of the alternate robots as derived using 

the two methods. Bhattacharya, et al. [13] combined 

quality function deployment (QFD) and AHP methods 

for solving the selection problems of industrial robots 

while taking into consideration four alternative robots 

and seven technical requirements. Karsak and Ahiska 

[14] utilized a practical MCDM common weight 

methodology with a  robot selection enhanced 

discriminating power. It was noticed that the 

methodology used  could further grade the units of 

DEA-efficient decision-making with a markable 

economy in computations compared with cross-

efficiency analysis. Rao and Padmanabhan [15] 

employed the matrix and digraph methods for 

estimating and rating alternative robots. Chatterjee, et 

al. [16] utilized two MCDM methods and ELECTRE 

II for solving robot selection problems. Kumar and 

Garg [17] proposed a deterministic quantitative model 

that depended on a distance-based technique for 

ranking, selecting, and evaluating robots. Chatterjee, 

et al. [16] applied compromise and outranking 

methods, ELECTRE II and VIKOR. Kentli and Kar 

[18] used a distance measurement technique and a 

satisfaction function to solve problems of robot 

selection. Rao, et al. [19] developed objective and 

subjective integrated multiple-attribute decision-

making techniques for robot selection. Athawale and 

Chakraborty [20] while resolving a selection problem 

of industrial robots, examined the ten renowned 

MCDM methods and summarized ranking 

performance that WPM, TOPSIS, and GRA applied 

marginally better than others. Mondal and 

Chakraborty [21] performed four-DEA models to 

select the optimal robots. Azimi, et al. [22] utilized the 

MADM polygon area method. Karande, et al. [23] 

surveyed the six popular MCDM methods ranking 

performance for problems selection industrial robots. 

Yazdani, et al. [24] disbanded the selection problem of 

a robot by fulfilling the COPRAS and MOORA 

methods. Xue, et al. [25] investigated an integrated 

linguistic MCDM approach, merging extended 

QUALIFLEX for appraisal robot selection problems 

with incomplete weight information. Bairagi, et al. 

[26], Kamble and Patil [27], and Sharaf [28] used a 

new TOPSIS, multiplicative MCDM model, and an 

ellipsoid algorithm based on the MCDM approach, 

respectively to dissolve the selection problem of a 

robot. Wang, et al. [29] created a decision support 

model merged with the entropy weighting method that 

utilizes the TODIM and cloud model to treat robot 

selection problems. Banerjee, et al. [30] developed a 

novel multiple-criteria analysis process for industrial 

robots’ selection and evaluation. Kumar and Raj [31] 

performed an inserted technique of modified GRA and 

AHP to choose the best mobile and material-handling 

robot. Horňáková, et al. [32] emphasized that mobile 

robots are the superior material handling equipment in 

an industrial setup. Rashid, et al. [33] proposed a 

hybrid methodology MCDM, to choose the best 

industrial robot alternatives by merging the EDAS and 

BWM methods, followed by sensitivity analysis, and 

comparing them with distance-based techniques, such 

as TOPSIS and VIKOR. Goswami, et al. [34] 

investigated the analysis of the robots’ selection 

problem by using two newly proposed hybrid MCDM 

models of COPRAS-ARAS and TOPSIS-ARAS 

There are several approaches to MCDM, and as the 

relative relevance of different criteria varies for 
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evaluating alternatives, many of these approaches rely 

on assigning either objective or subjective weights to 

those criteria. The criterion weights are often 

estimated using subjective weighing algorithms like 

AHP, BWM, etc., which might result in biased 

findings and discrepancies. The literature shows that 

objective weighting approaches are widely utilized in 

the decision-making disciplines to assess parametric 

weight. Ma, et al. [35] discussed an approach to 

determining objective and subjective attribute weights 

using the mathematical programming of a model. 

More objective weight attribution methods are 

proposed such as the CRITIC, Diakoulaki, et al. [36], 

the MW, Deng, et al. [37], the EM, Shanian and 

Savadogo [38], and preference Selection Index,  

Maniya and Bhatt [39]. Fusion of some of these 

methods is proposed by Wang and Luo [40] to submit 

a weight attribution using correlations coefficient 

(CC) and SD method.  

In order to determine the best robot for the job 

numerous studies using a variety of MCDM 

approaches have been carried out. However, more 

investigation is needed to examine how various 

MCDM approaches to robot selection problem-

solving handle the assignment of weights to criteria. 

Moreover, none of the researchers have previously 

tried to join various MCDM approaches and different 

weight calculation methods, to develop a robust 

MCDM system. Twenty distinct permutations of five 

weight calculation methods (MW, SDV, EM, CRITIC, 

and AHP) and four MCDM approaches (COCOSO, 

TOPSIS, VIKOR, and MOORA) were taken into 

account in this study to evaluate the consistency of the 

ranking outcomes in robot selection challenges. When 

a single rating is to be proclaimed, it is urgent to note 

that the many permutations each supply their distinct 

perspective on the ranking process. There is no 

standard to choose the best option. Using the MEAN 

approach, can be combined these individual rankings 

into one more accurate overall score.  

Figure 1 shows the flowchart model which represents 

the complete analysis's overall structure. 

 

 

Figure.1 Flowchart model of the MCDM analysis 

whole robot selection. 

 

2. Illustrative Case Study and Methodology 

2.1. A Case Study on Robot Selection Problem  

 

In this study, Bhangale, et al. [12]  quantitative dataset 

for the robot selection issue. As can be seen in Table ( 

1 ), five requirements must be met, and seven possible 

solutions. Here, repeatability is a negative criterion 

when, in general, all criteria are positive. The AHP 

technique is used to estimate the weights of the 

criterion. But the total weight of these criteria is more 

than one. Using the robot selection issue defined by 

Bhangale, et al. [12], Athawale and Chakraborty [20]  

re-normalized the criterion weights to be C1 = 0.1574, 

C2 = 0.1825, C3 = 0.2385, C4 = 0.2172, and C5 = 

0.2043.  
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Table 1- Robot Selection of Quantitative Data 

Bhangale, et al. [12] 

 Robot C1 C2 C3 C4 C5 

R1 

 
ASEA-

IRB 60/2 
60 0.40 2540 500 990 

R2 

Cincinnati 
  

Milacrone 

T3-726 
 

6.35 0.15 1016 3000 1041 

R3 

Cybotech 

V15 

Electric 

Robot 

6.8 0.10 1727.2 1500 1676 

R4 

 

Hitachi 

America 

Process 

Robot 
 

10 0.20 1000 2000 965 

R5 

Unimation 

PUMA 

500/600 
 

2.5 0.10 560 500 915 

R6 

United 

States 

Robots 

Maker 110 
 

4.5 0.08 1016 350 508 

R7 

Yaskawa 

Electric 

Motoman 

L3C 

3 0.10 177 1000 920 

 

It should be noted that Bhangale, et al. [12] used five 

different robot selection attributes are considered as  

C1- Load capacity (kg),C2- Repeatability(mm),  C3- 

Maximum tip speed (mm/s)                                                                                                                                                

. C4- Memory capacity, C5- Manipulator reach (mm). 

In the current article, we re-use the robot selection 

issue and discuss four MCDM techniques for solving 

it. The alternatives to robots are ranked using 

COCOSO, TOPSIS, VIKOR, and MOORA, and the 

weights of the criteria are assessed using one of five 

weight estimate techniques (MW, SD, EM, CRITIC, 

or AHP). 

 
 

2.2 MCDM Tools 

The steps of the mathematical calculations for the 

applied MCDM tools are discussed in the upcoming 

sub-sections. 
 

2.2.1 A Brief Review of the Assignment of Weight 

Methods Used in this Work.  

2.2.1.1 Mean Weight Method 

The implied weight depends on the assumption that all 

criteria are of equal importance. This can be declared 

by using the use of an equation. 
 

wj =
1

n
                                  (1) 

 where (n) is the criteria number. 

2.2.1.2 SD Method 
Having m alternatives and n criteria, a decision matrix 

is proposed by decision-makers presenting the 

relationship between criteria and alternatives. The 

decision-making matrix can be expressed as:  

 

   X = [

X11 X12 ⋯ X1n

X21 X22 ⋯ X2n

⋮    ⋮      ⋱    ⋮
Xm1 Xm2 ⋯ Xmn

]         (2) 

 Here Ai (i= 1,2.... m) signifies the possible 

alternatives, Cj (j= 1,2....... n) represents the criteria 

relating to alternative performance, and xij is the 

performance of Ai concerning attribute C j SD 

technique determines the weights of the standards in 

terms of their standard deviations. The weighting 

factor can be calculated as 

𝑤𝑗=
σj

∑ σj
n
j=1

                                (3) 

 

Where 𝜎𝑗 is the standard deviation for criterion j. 
 

2.2.1.3 Entropy Method 
In information theory, entropy serves as a criterion for 

the degree of uncertainty represented by a discrete 

random distribution, with the consensus being that a 

more loosely packed distribution better captures the 

essence of uncertainty than a more tightly packed one. 

Following is a description of how to use the entropy 

weight technique for a decision-making issue, as given 

by (Eisa [41] ): 

The weight is computed using the EM by the following 

steps. 

Step 1. Determine the normalized decision matrix (𝒑𝒊𝒋) 

using equation (4): 

  pij =
xij

∑ xij

m

i=1

pij                            (4) 

Where j= 1, 2, …, n and   i= 1, 2, …, m 

Step 2. Determine the entropy value for each 

criterion (𝑬𝒋) using equation (5) : 

    Ej = −h ∑ pij ln(pij)
m

i=1
         (5) 

where 𝒉 =
𝟏

𝒍𝒏(𝒎)
  is constant and 0 ≤ 𝑬𝒋 ≤1 

Step 3.   For each criterion, the weight  𝑾𝒋is computed 

as: 

      Wj =
dj

∑ (dj)n
i

                                 (6) 

Where 𝒅𝒋  is the divergence degree of the average 

intrinsic information found in each criterion   

computed as: 

 dj = 1 − Ej                             (7) 

Compute the weight (Wj) representing the importance 

of criteria as:  

  ∑ Wj = 1, j = 1, … , n.n
j=1                (8) 
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2.2.1.4 Criteria Importance through inter criteria 

Correlation 
As part of this research, the CRITIC technique is used 

to make a weighted judgment of the criteria 

objectively. The choice problem's contrast intensity 

and conflict assessment are taken into consideration to 

determine the weights to be applied. In addition, this 

approach does not need human involvement in the 

evaluation stage, which helps to further automate the 

decision-making process. Herein follows a brief 

overview of the procedure (details can be seen in 

Diakoulaki, et al. [36]). 

Step 1. Normalize the decision matrix as follows.  

    𝑟
𝑖𝑗=

𝑥𝑖𝑗 −min (𝑥𝑖𝑗)

max (𝑥𝑖𝑗)−min (𝑥𝑖𝑗)

                      ( 9 )                                                                    

where 𝑟𝑖𝑗  is the normalized performance value of the 

ith alternative on the jth criterion. 

Step 2: Determine the standard deviation (σj ) of each 

criterion. 

Step 3. Determine the amount of information 

contained in the jth criterion through the following 

multiplicative formula. 

Cj= σj  ∑ (1 − rij)
𝔫
j=1                     (10)                                                                                         

 

where   𝑟𝑖𝑗  is the correlation coefficient between two 

different criteria 

Step 4. Determine the objective weights of each 

criterion by normalizing Cj with the following 

formula. 

  Wj=
Cj

∑ Cj
𝔫
j=1

                           (11) 

 

where Wj is the objective weight of the jth criterion. It 

is worth mentioning that this method gives high 

weights to those criteria with high standard deviation 

and low correlation with other criteria.  

2.2.2 A Brief Review of the MCDM Approaches 

Used in This Work  

COCOSO, TOPSIS, VIKOR, and MOORA are all 

MCDM techniques that are used to analyze 

information. Both benefits and drawbacks may be 

associated with any approach. No one approach can be 

said to be superior to the others. In most cases, the 

analyst's preferences will determine which approach is 

used.  

2.2.2 .1 Combined Compromise Solution COCOSO 

Method  

Yazdani, et al. [24] offer the COCOSO technique. 

When the weighted sum approach and the 

exponentially weighted product method are combined, 

you get the COCOSO method. Here, we provide the 

computational specifics of the COCOSO approach 

used in this paper: 

Step  1 The normalization of criteria values is 

accomplished based on the compromise normalization 

equation 

 r
ij=

xij −min (xij)

max (xij)−min (xij)

                      ; for benefit      (12)     

r
ij=

max (xij)−xij

max (xij)−min (xij)

  
                                ; for cost                     

Step 2 Determination of the sum of the weighted 

comparability sequence Si  and   the power weight of 

comparability sequences Pi  

Si= ∑ (Wj   rij)
𝔫
j=1                         (13) 

p
i= ∑ (rij)𝔫

j=1
wj                           (14)                           

   Step 3 Three appraisal scores are used to generate 

relative weights of other options derived using 

equations (15  ), (16), and (17):  

 k
ia=

pi+ si
∑ (pi+si

)m
i=1

                                                         (15)                

k
ib=

si
minsi

+
pi

minpi
  
                         (16)        

kic =
λ(si)+(1−λ)(pi)

λmaxsi+(1−λ)maxpi)
                   (17)                                  

In Equation (17), λ (usually λ=0.5) is chosen by 

decision-makers. 

Step 4. The ranking of all the alternatives is found 

based on ki values from higher to lower. 

𝑘𝑖=(𝑘𝑖𝑎𝑘𝑖𝑏𝑘𝑖𝑐)+( 𝑘𝑖𝑎 +𝑘𝑖𝑏 +𝑘𝑖𝑐)

1

3                 (18) 

2.2.2.2 TOPSIS Method  

For this technique to work, the optimal option must be 

the one that is farthest away from the negative ideal 

solution and has the least Euclidean distance to it. 

Abeer S. Eisa [41]. lays forth the fundamental 

procedures of the TOPSIS approach as follows: 

Step 1. Constitute the matrix D using priority scores 

given to each alternative on each criterion.  

Step 2. Compute the weight (Wj) indicating the 

importance of criteria as equation (11)  

Step 3. Determine the normalized decision matrix (rij): 

    rij =
xij

√∑ (xij)2
n

j=1

, i = 1, … , m; j = 1, … , n.     (19) 

Step 4. Compute the weighted normalized decision 

matrix: 

Multiply the columns by𝒓𝒊𝒋 the corresponding weights 

(wj) as:  

vij = Wj  ∗ rij,                    (20) 

where is 𝑾𝒋the weight of its attribute. 

Step 5. Determine the positive ideal solution (𝐴+) and 

the negative ideal solution (𝐴−) by using the following 

formulas: 

     Aj
+ =  {v1

+, v2
+, … , vm

+ } 

= {(maxivij/j ∈ B), minivij/j ∈ C) }         (21) 
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  Aj
− =  {v1

−, v2
−, … , vn

−}  

          = {(minivij/j ∈ B), maxivij/j ∈ C) }       (22) 

Where B and C correspond to the benefit and cost 

criteria set, respectively. 

Step 6. Use the Euclidean distance to compute the 

measures of separation Si
+ and Si

− of each alternative 

from the Aj
+  and Aj

− : 

Si
+ = √∑ (Vij − Aj

+)2m
i=1                     (23) 

Si
− = √∑ (Vij − Aj

−)2m
i=1                     (24) 

Step 7. Find the ideal alternatives by the computation 

of the relative closeness coefficient (RCCi) as: 

RCCi=
Si

−

Si
++Si

−  , i =  1, 2, … , m; 0 ≤ RCCi ≤ 1  (25) 

Step 8. Rank the alternatives according to their RCCi 

relative closeness coefficient to the ideal alternatives: 

the upper value of RCCi ,the better the alternative Ai. 
 

2.2.2.3 VIKOR Method for MCDM 

Abeer S. Eisa [41] lays forth the theoretical 

foundations of VIKOR, which will be used in this 

investigation. With the VIKOR approach, a decision 

matrix is the starting point. The following are the 

stages of the VIKOR algorithm. 

Step 1：Determine the best and the worst values of all 

the criteria using Equations (21 and 22 ). 

Step 2：Determine the average Sj and the worst group 

score  Rj  of i-th alternative as defined by Equations ( 

26 ) and ( 27 ): 

 Si =  ∑ (Wj
m
j=1 ∗

Xi
+− Xij

Xi
+− Xi

−)                (26) 

 Ri =  Maxj(Wj ∗
Xi

+− Xij

Xi
+− Xi

−)                   (27) 

  Step 3：Determine the overall ranking index for each 

alternative (Qi) using the following formula: 

  Qi = v ∗  (
Si−S∗

S−−S∗) + (1 − v) ∗ (
Ri−R∗

R−−R∗)         (28) 

Where:  S∗= MiniSi  , S
−= MaxiSi .R

∗= MiniRi , R
−= 

MaxiRi , and ν is the significance of the strategy of 

criteria (objectives) majority whose value is usually 

set to be 0.5.  
 

2.2.2.4 MOORA method 

The following section describes the methodological 

basis of MOORA to be applied in this work. The steps 

of the MOORA method are described as follows: 

Abeer S. Eisa [41]. 

 MOORA method starts with a decision matrix as 

expressed previously. The procedure for using 

MOORA for ranking alternatives is described here. 

Step 1: Compute the normalized decision matrix by 

vector method as defined by Equation (29): 

X′ij =
xij

√∑ (xij)2
m

i=1

                        (29) 

where:      i=1 , …,m ;        j=1,…,n 

Step 2: Calculate the composite score as expressed in 

Equation (30): 

Zi = ∑ X′ij
b
j=1 −  ∑ X′

ij
n
j=b+1                    (30) 

Where ∑ 𝑋′𝑖𝑗
𝑏
𝑗=1  and ∑ 𝑋′𝑖𝑗

𝑛
𝑗=𝑏+1  are, respectively, the 

benefit and non-benefit (cost) criteria. 

The overall grade may be represented as in Equation 

(31) if certain characteristics are weighted more 

heavily than others. 

 Zi = ∑ Wj X′ij
b
j=1 −  ∑ Wj X′ij

n
j=b+1 , i = 1 , … , m 

(31) 

 Where  Wj is the weight of  the criterion. 

Step 3: Sort the alternatives by Zi value, which may be 

positive or negative based on whether or not the 

alternatives' maxima (benefit characteristics) or 

minima (non-benefit attributes) sum to more than zero 

in the decision matrix. Ultimately, one's choice is 

derived from an ordinal ranking of Zi, with the greatest 

Zi value being the best option and the lowest Zi value 

representing the worst. 

 

3. RESULTS and DISCUSSION  

3.1 Weight Allocation Methods  

In this study, the weight of the robot criterion using 

many different approaches, including the mean weight 

technique, the standard deviation method, the entropy 

method, and the CRITIC method was calculated.  

Each criterion is given the same amount of 

consideration in the equal weight technique, and the 

formula for doing so is provided in the next sentence. 

There are a total of five criteria, and each one has an 

equal amount of weight (0.2).  

Each criterion's weight was determined using the 

standard deviation approach and was recorded in 

Table (2 ) using equation (3 ).  

The relative importance of each criterion was 

determined using the entropy technique (equations (5 

- 8)), and the results are provided in Table (3) 
 

Table 2- Criterion Weight  According to the SD 

Method 

 C1 C2 C3 C4 C5 

SD

j 

0.360

8 

0.352

8 

0.352

8 

0.367

3 

0.295

7 

Wj .2171 .2123 
0.204

1 
0.178 0.178 

 

Table 3- Criterion Weight  According to Entropy 

Method 
 C1 C2 C3 C4 C5 

Ej 0.6430 0.9113 0.9487 0.8749 0.9747 

Dj 0.3570 0.0887 0.0513 0.1251 0.0253 

Wj 0.5515 0.1370 0.0792 0.1932 0.0391 
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The procedure of the CRITIC method for the 

calculation of the criteria  weight is depicted in the 

following steps 

Step 1:  Normalize the decision matrix using 

Equation (9 ) to determine the standard deviation  of 

each criterion and as shown in Table 4  

 

Table  4- Normalized Matrix for CRITIC Method 
 C1 C2 C3 C4 C5 

R1 1.0000 0.0000 1.0000 0.0566 0.4127 

R2 0.0670 0.7813 0.2303 1.0000 0.4563 

R3 0.0748 0.9375 0.5895 0.4340 1.0000 

R4 0.1304 0.6250 0.2222 0.6226 0.3913 

R5 0.0000 0.9375 0.0000 0.0566 0.3485 

R6 0.0348 1.0000 0.2303 0.0000 0.0000 

R7 0.0087 0.9375 0.6152 0.2453 0.3527 

SD 0.3608 0.3528 0.3392 0.3673 0.2957 

 
Step 2: A symmetric matrix is built according to 

Equation (10) as shown in Table (5) 

 

Table 5- Symmetric Matrix 
 C1 C2 C3 C4 C5 

C1 1.0000 -0.9609 0.7615 -0.2699 0.0242 

C2 -0.9609 1.0000 -0.6605 0.0616 -0.0191 

C3 0.7317 -0.6605 1.0000 -0.2197 0.3151 

C4 -0.2699 0.0768 -0.2197 1.0000 0.3711 

C5 0.0242 -0.0191 0.3151 0.3711 1.0000 

 

Step 3: The measure of conflict is determined using 

Equation (11 ) as shown in Table ( 6  )  

 

 

 

 

 

 

 

 

 

 

Table 6- The Measure of the Conflict 

 C1 C2 C3 C4 C5 
Conflict  

measure  

C1 0.000 1.960 0.238 1.269 0.975 4.4451 

C2 1.960 0.000 1.660 0.938 1.019 5.5789 

C3 0.268 1.660 0.000 1.219 0.684 3.8334 

C4 1.269 0.923 1.219 0.000 0.628 4.0417 

C5 0.975 1.019 0.684 0.628 0.000 3.3088 

Conflict  

Measure 
4.445 5.578 3.833 4.041 3.308  

 

Step 4: Finally, according to Equation (12), objective 

weights are computed. The final objective criteria 

weights are shown in Table (7(. 
Table 7 - Criterion Weight According to the CRITIC 

Method 
 C1 C2 C3 C4 C5 

Wj 0.2186 0.2683 0.1773 0.2024 0.1334 
 

 

A ranking is determined based on the weights assigned 

to each criterion through the various methods, as 

shown in Table (8). According to the CRITIC 

technique, as shown in Table (8) and Fig. (1), C2 is the 

most crucial criterion, followed by C1, C3, C4, and C5 

 

 
Figure  2- The Weight for each Criterion and Their 

Ranking in Terms of Different Approaches

 
Table 8- The Weight for each Criterion and Their Ranking in Terms of Different Approaches 

Criteria 
CRITIC Method SD Method MW Method Entropy Method AHP Method  

Weight Rank Weight Rank Weight Rank Weight Rank Weight Rank 

C1 0.2186 2 0.2171 1 0.2 1 0.5515 1 0.1574 5 

C2 0.2683 1 0.2123 2 0.2 1 0.1370 3 0.1825 4 

C3 0.1773 4 0 .2041 3 0.2 1 0.0792 4 0.2385 1 

C4 0.2024 3 0.178 4 0.2 1 0.1932 2 0.2172 2 

C5 0.1334 5 0.178 5 0.2 1 0.0391 5 0.2043 3 
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3.3 Impact of Criteria Weights 

Techniques on Ranking Order 
 

A comparison study is carried out to illustrate how the 

ranking of robots shifts as a result of variations in 

criterion weights. 

3.3.1 Computational data of COCOSO Method 

Using CRITIC Weight  

Table (9) indicates that R3 is the top robot and R6 is 

the bottom. Thus, the robot selection problem 

assessment choice is phrased as R3 > R2 > R4 > R7 > 

R1 > R5 > R6. Table (10) displays the results of the 

COCOSO approach, and five different weight 

assignment methods used to evaluate the robot's final 

ranking. Table (10) and Figure (2) reveal that, except 

for the EM approach, all of the applied weighting 

strategies agree that R6 is the poorest option and R3 is 

the best. The first two spots are consistent across all 

methods except EM. The findings of this approach are 

constant enough to yield the same best and worst 

outcomes in all circumstances, despite slight 

differences in the rankings of the middle-order 

options. The same calculation steps can be performed 

for all criteria Weights Techniques. 

 
Using the information in Table (1), the power-

weighted comparability sequence and the sum of the 

weighted comparability sequence of the ith option by 

solving the corresponding systems of equations (12 -

18) can be determined. Table (9)  includes the 

calculated values for the three combined evaluation 

scores (Kia, kib, and Kic). The ki-based ranking score 

is used to determine where each option falls on the 

final ranking list  
 

 

Table 9- The Computational Data of COCOSO Method Using CRITIC Method 

Robot Si Pi Ka Kb Kc Ki RANK 

R1 0.4939 3.4008 0.1424 3.4591 0.7891 2.1922 5 

R2 0.5070 4.1344 0.1697 3.8360 0.9404 2.4964 2 

R3 0.6071 4.3284 0.1805 4.3179 1.0000 2.7514 1 

R4 0.3983 4.0544 0.1628 3.3711 0.9022 2.2686 3 

R5 0.2685 2.3602 0.0961 2.1072 0.5326 1.3875 6 

R6 0.2530 2.2563 0.0918 2 0.5084 1.3198 7 

R7 0.4319 3.8486 0.1565 3.4125 0.8673 2.2513 4 

 

Table 10  - The Robot Rankings Using COCOSO 

Method and Five Weight Assignment Methods 

 
Weight 

Method 
Ranking 

BES

T 

WORS

T 

MW 

R3 > R2 > R4> 

R7>  R1 > R5 > 

R6 

R3 R6 

SD 
R3 >R2  >R7 >R4 

>R1 >R5> R6 
R3 R6 

CRITIC 
R3 >R2  >R4 >R7 

>R1> R5> R6 
R3 R6 

EM 
R1 >R2  >R3 >R4 

>R7 >R5 >R6 
R1 R6 

AHP 
R3 >R2 > R7 >R4 

>R1 >R5 >R6 
R3 R6 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 - Spearman rank correlation coefficient  for 

COCOSO Method and the five Weigh Assignment 

Methods  

 

Metho

d 

M

W 
SD 

CRITI

C 
EM AHP 

MW  
0.964

3 
1 

0.607

1 

0.964

3 

SD   0.9643 
0.571

4 
1 

CRITI

C 
   

0.607

1 

0.964

3 

EM     
0.571

4 
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Figure  (3)   The Spearman’s rank Correlation 

Coefficient  for COCOSO Method and the five 

Weight Assignment Methods  

 
The coefficient of Spearman rank correlation is more 

than 0.8 in six instances (MW-SD, MW-CRITIC, 

MW-AHP, SD-CRITIC, SD-AHP, and CRITIC -

AHP) (see Table (11) and Fig (3) for details), 

indicating a substantial rank connection between the 

existing proposed ranks. In addition, Spearman’s rank 

Correlation Coefficient (SCC) of all the used weight 

techniques is more than 0.9, and their ultimate 

placement in the ranking reflects their efficacy in the 

continuing inquiry into the decision-making process. 

 

3.4 Impact of the MCDM Methods and 

Criterion Weights Techniques on the 

Ranking of Robots  
 

Since the robot ranking is affected by the MCDM 

approaches, a comparison study to show how 

changing the MCDM method and the weight 

assignment method affects the robot ranking was 

conducted.  
 

3.4.1Computational data of TOPSIS Method Using 

CRITIC Method 

The TOPSIS process, as described above, will be used 

in the following: 

Equation (19) allows one to determine the normalized 

worth of each option. By plugging the original 

decision matrix into Eq. (20), we can get the weighted 

normalized version. 

The optimal and suboptimal solutions for each 

criterion have been calculated and given in Table (12)   

using Eqs (21and 22) 

 

 

 
 Then, using Eq. (24  ), the distances Si(+) and Si(-) 

between each possible solution and the best and worst 

ones, respectively. At last, Eq. (25) to get the rank of 

all the experiments and the relative proximity values 

RCCi between them. The findings are shown in Table 

(13) 

 

Table 13 - Computational data of TOPSIS Method 

Using CRITIC method 

Robot S+j S-j Ci RANK 

R1 0.2115 0.2228 0.5130 1 

R2 0.2070 0.1889 0.4771 2 

R3 0.2056 0.1852 0.4739 3 

R4 0.2086 0.1389 0.3997 6 

R5 0.2562 0.1595 0.3837 7 

R6 0.2515 0.1700 0.4034 5 

R7 0.23 0.1713 0.4269 4 

 
3.4.2 Computational data of VIKOR Method Using 

CRITIC Method 

 
The VIKOR method implementation described earlier 

will be used here: 

At first, the Equation determines the optimal and 

suboptimal values for each criterion. Using equations 

(26) and (27), the individual regret value and the group 

utility Si for each option. The value of   =  

,  =   ,  = , and   =   

can be also found. then the compromise value  for 

each alternative can be computed using equation (28) 

and the rank of each experiment is determined.   The 

results are shown in Table (14)  

Table 14 - The Computational data of the VIKOR 

Method using the CRITIC method. 

Robot Si Ri Qi RANK 

R1 0.3171 0.1689 0.7309 7 

R2 0.6189 0.4768 0.2036 2 

R3 0.6326 0.4728 0.0778 1 

R4 0.6772 0.4443 0.3163 3 

R5 0.8344 0.5110 0.6822 6 

R6 0.8032 0.4932 0.6208 5 

R7 0.8198 0.5065 0.4066 4 

 

 

Table 12 - The Best and the Worst Solutions for all Criteria 

 C1 C2 C3 C4 C5 

Best(Ai+) 0.2122 0.0422 0.1127 0.1478 0.0803 

Worst(Ai-  0.0088 0.2109 0.0248 0.0172 0.0243 
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3.4.3 Computational data of MOORA Method 

Using CRITIC Method 

A description of the MOORA technique has been 

provided and will be followed here: 

In the first stage, Eq. (29). to get a normalized value 

for each option  

In the second step, Equation (31) to get the total score 

across all criteria. In Table (15), the aggregate score 

for all criteria and the resultant rank of each option are 

recorded.  

 

Table 15 - The Computational data of the MOORA 

Method using the CRITIC method 

Robo

t 

Beneficia

l 

Non-

Beneficia

l 

Zi 
RAN

K 

R1 0.3969 0.2109 
0.186

0 
3 

R2 0.2652 0.0791 
0.186

1 
2 

R3 0.2549 0.0527 
0.202

2 
1 

R4 0.2245 0.1054 
0.119

0 
5 

R5 0.1021 0.0527 
0.049

4 
7 

R6 0.1025 0.0421 
0.060

3 
6 

R7 0.1828 0.0527 
0.130

1 
4 

 

 

 

3.4.4 Comparison of the Robot Ranks in Terms of 

Different MCDM Methods and Different Weights 

of Criteria Methods  

Concerning the alternative robots spotted rankings for 

the Bhangale, et al. [12] case study, the major purpose 

of this paper is to compare the outcomes of the 20 most 

common combinations (MCDM method - WEIGHT 

method). The relative rankings of the options are 

shown in Table (16) for each of the 20 possible 

permutations of the MCDM techniques and the criteria 

weights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 16 - The Robot  Ranks in Terms of Different MCDM Methods and Different Weights of Criteria Methods 

COCOSO TOPSIS 

 MW SD CRIT ENT. AHP MW SD CRIT ENT. AHP 

Comb. # 1 2 3 4 5 6 7 8 9 10 

R1 5 5 5 1 5 1 1 1 1 1 

R2 2 2 2 2 2 3 3 2 2 3 

R3 1 1 1 3 1 2 2 3 4 2 

R4 3 4 3 4 4 5 5 6 3 5 

R5 6 6 6 6 6 7 7 7 7 7 

R6 7 7 7 7 7 6 6 6 6 6 

R7 4 3 4 5 3 4 4 4 5 4 

VIKOR MOORA 
Integration 

Method 

 MW SD CRIT ENT. AHP MW SD CRIT ENT. AHP 
Mean 

Composite 

Comb. # 11 12 13 14 15 16 17 18 19 20 Rank 

R1 4 4 7 1 4 2 1 3 1 2 3 

R2 3 3 2 2 3 3 3 2 2 3 2 

R3 1 1 1 4 1 1 2 1 4 1 1 

R4 2 2 3 3 5 5 5 5 3 5 4 

R5 6 7 6 7 7 7 7 7 7 7 7 

R6 7 6 5 6 6 6 6 6 6 6 6 

R7 5 5 4 5 2 4 4 4 5 4 5 
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Drawing on data in Table (16 ) and Figure ( 4 ). 

Considering that Robot 3 is the top-ranked robot in 11 

out of the 20 possible permutations and Robot 1 is the 

top-ranked robot in 9 of those permutations, it is safe 

to say that both Robot 3 and Robot 1 are middle-of-

the-road answers (each of them can be as the best 

option). A comparison study suggests we choose 

Robot 5 as the least significant robot even though the 

worst robot fluctuates between Robot 5 and Robot 6. 

Results from this approach are stable enough to yield 

the same best and worst outcomes in all scenarios, 

despite minor ranking fluctuations in the middle-order 

robots. 

 

Figure 4- Robot Ranking Variations for the 20 

Different Combinations of (the MCDM method –

WEIGHT method) 

The ranking performance of the robots obtained using 

the 20 different combinations is compared, and it is 

found that some combinations share the same ranking 

performance as others. For example, the four 

combinations (TOPSIS-MW, TOPSIS-SD, TOPSIS-

AHP, and MOORA-SD) all rank the same (R1 > R3 > 

R2 > R4 > R3 > R7 >  R6>R5), as do the combinations 

(COM.9,14, and 19), which all rank the same (R1 > 

R2 
 

3.4.5 Integrate the Obtained Ranks Using the Rank 

Average (Mean) Method 
 

The rankings derived from the 20 permutations are not 

uniform, and this must be taken into account. The 

dilemma that emerges in such a scenario is what 

specific combinations need to be picked. For this 

research, determining which of 20 possible 

permutations yields the proper ranking is impossible. 

Methods such as the Rank Average (Mean), Broda, 

and Copeland Integration may be used to deal with the 

issue Ghafari, et al. [42]. and then assess the efficiency 

of each of the 20 possible permutations to choose the 

best. In this study, the Rank Average (Mean) 

technique of integration to combine the 20 acquired 

rankings into a single composite rank (composite 

rank). This technique uses an average of the 

determined rankings from all 20 permutations to 

determine the robots' final order. This is the simplest 

method for determining a median rank from the 20 

possible permutations (composite rank). According to 

the results in Table (16), the composite rank is  (R3 

>R2  >R1 >R4 >R7 >R6 >R5 ).  In this article, the 

results of the 20 combinations are not similar to the 

composite rank, hence it can choose the composite 

rank as the best rank. 

The best rank, determined by using a composite 

ranking, is compared to the rankings determined by 

using the other 20 permutations. Spearman's rank 

correlation coefficient (SCC) is utilized to determine 

the two groups here. Between 0.64 to 0.96, the SCC 

value is measured. Based on the data, we can deduce 

that combination 18 has a perfect correlation with the 

composite rank, while combinations 16 and 20 are 

only moderately correlated, combinations 1 through 7 

and 10 through 12 and 17 have a fair correlation, and 

combinations 8 through 9 and 13 through 15 and 19 

have a terrible correlation. The results suggest that the 

performance of the MOORA combination strategies 

(MOORA-MW, MOORA-CRITIC, and MOORA-

AHP) is adequate for addressing the selection issues. 

This research shows that although the COCOSO 

approach is novel, it only has a modest correlation with 

the composite rank, making it potentially 

inappropriate for application in the selection issue. 

Thus, it is unrealistic to assume that any newly 

developed MCDM approach would be superior to 

tried-and-true techniques like TOPSIS, VIKOR, and 

MOORA. Decision mistakes may occur if just one 

MCDM-TOOL (MCDM method - WEIGHT method) 

is used to pick the options without also considering the 

other MCDM-TOOLS. 

 

4. Conclusions   
 

For inspecting a robot selection problem ,the 

following conclusion can be draw twenty different 

combinations between five weight calculation 

techniques ( MW, SD, EM, CRITIC, and AHP) and 

four MCDM approaches ( COCOSO, TOPSIS, 

VIKOR, and MOORA ). 

1- The ranking result for MCDM issues is sensitive to 

changes in the MCDM - Tools (MCDM 

methodologies and weight determination methods. 

2- The Rank Average (Mean) technique of integration 

to combine the 20 acquired rankings into a single 

composite rank (composite rank) has been developed. 

3- The results obtained have shown that the 

performance of the MOORA combination strategies 

(MOORA-MW, MOORA-CRITIC, and MOORA-

AHP) is adequate for addressing the selection issues.  

4- The obtained results shown that robot 3 is the top-

ranked robot in 11 out of the 20 permutations, 

5- The COCOSO approach, although of recent origin, 

correlates only somewhat with the composite rank. 
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6- Decision mistakes may occur if just one MCDM-

TOOL is used to pick the options without also 

considering the other MCDM-TOOLS. 

Possible future work including this study may include 

evaluating the longevity of various hybrid MCDM 

approaches to robot selection issues. Only clean 

datasets are discussed in this article. Robot selection is 

fraught with uncertainty, but this research may be 

expanded to address MCDM procedures based on 

intuitionistic fuzzy sets in a single-valued 

neutrosophic setting. 
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